

Protocole d'essai pour les éléments de levage incorporés dans les MCI/MCII

Version validée lors du GS3.2 du 23 juin 2022.

Le présent protocole est référencé dans les listes minimales des familles de « Système de levage incorporé », « Mur à coffrage intégré », « Mur à coffrage et isolation intégrés » et « Mur de façade de types panneaux sandwich ». Ces documents doivent être utilisés conjointement.

Nota : Ce protocole d'essais est adapté aux inserts de levage réalisés à partir d'acier B235 ; pour d'autres nuances il est nécessaire de justifier la résistance sous sollicitations alternées de pliage/dépliage.

Afin de considérer les inserts comme isolés, ils doivent être espacés d'au minimum $1.5l_p$ (voir §3.3 pour la définition de l_p) lors de la mise en œuvre dans la conception du MCI/MCII. Si l'espacement est inférieur, il conviendra de considérer les inserts comme jumelés et réaliser les essais simultanément sur les deux.

1. Définitions

1.1 Définition des instants t₀, t₁ et t₂ :

- t₀: moment de fabrication du béton de la 2^{nde} face ;
- t1: moment à partir duquel les inserts de levage sont utilisés pour manipuler le produit en usine;
- t₂: moment à partir duquel le produit est manipulé sur chantier ;

1.2 Définition des résistances en compression simple du béton de la seconde face :

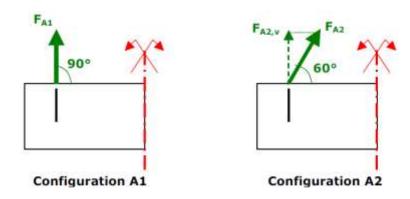
- f_{c,1} : résistance à la compression minimale revendiquée du béton de la seconde face mesurée sur cubes de 10 cm de côté à l'instant t₁;
- f_{c,2} : résistance à la compression minimale revendiquée du béton de la seconde face mesurée sur cube de 10 cm de côté à l'instant t₂

1.3 Définition de la 1ère manutention

La 1^{ière} manutention est définit comme la première utilisation des inserts de levage que ce soit en usine ou à la livraison.

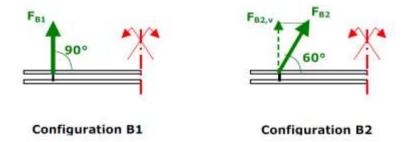
Si les inserts de levage sont utilisés en usine, deux cas de figure peuvent se présenter :

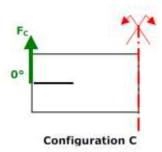
- Cas a : $f_{c,1} = f_{c,2}$; le présent protocole s'applique sans aucune modification ;
- Cas b: f_{c,1} < f_{c,2}; l'annexe au présent protocole s'applique préalablement au §5.5 du présent document.


2. Principes

2.1 Hypothèses générales

Le principe des essais de levage vise à caractériser la capacité résistante des inserts de levage dans les configurations d'essais suivantes :


- Configuration A Effort exercé dans le plan du MCI/MCII en analysant les deux situations ci-après, différenciées par l'angle formé par l'axe de l'effort et le bord du MCI/MCII :
 - Configuration A1 angle de 90°;
 - Configuration A2 angle de 60°.


Cette configuration correspond à un levage vertical du MCI/MCII.

- Configuration B Effort exercé dans le plan orthogonal au MCI/MCII avec l'inclinaison d'effort identifiée dans la configuration A comme la plus défavorable. On aura donc, suivant les cas, des essais réalisés suivant les configurations:
 - Configuration B1 angle de 90°;
 - Configuration B2 angle de 60°.

Cette configuration correspond à un levage à plat en 4 points, situation admise uniquement dans le cas de murs de faibles dimensions (inférieures à 7.5 m^2).

• Configuration C – Effort exercé dans le plan du MCI/MCII, l'axe de l'effort et le bord du MCI/MCII formant un angle de 0°.

Cette configuration correspond à la situation de retournement.

2.2 Charge Maximale d'Utilisation

NOTA : Le contenu de ce paragraphe est donné à titre indicatif, et n'est pas à la charge du demandeur.

Ce principe est applicable aux valeurs de rupture - notées dans la suite du document Fr - issues des valeurs Pr définies au 83.5.

La performance des éléments de levage est définie par leur Charge Maximale d'Utilisation, en fonction des conditions de levage prescrites initialement :

Levage du mur en position verticale	Levage du mur à plat	Retournement		
CMU ₁	CMU₂	CMU₃		

Ces valeurs prennent en compte les situations prévues et, pour le cas de la valeur CMU₁, des situations non prévues, comme indiqué ci-après.

$$\begin{split} CMU_1 &= \frac{Fr_{A,k}}{3} \\ CMU_2 &= \frac{Fr_{B,k}}{3} \\ CMU_3 &= \frac{Fr_{C,k}}{3} \end{split}$$

Où:

 $Fr_{A.k}$ Résistance caractéristique à la rupture pour la configuration A (projection verticale de l'effort mesuré).

 $Fr_{B.k}$ Résistance caractéristique à la rupture pour la configuration B (projection verticale de l'effort mesuré).

 $Fr_{C.k}$ Résistance caractéristique à la rupture pour la configuration C

Un coefficient de sécurité complémentaire de 1,2 est appliqué sur les valeurs de CMU pour les procédés de mur qui ne font pas l'objet d'une certification de type NF 548 ou équivalente.

3. Mode opératoire

3.1 Caractérisation

L'échantillon d'essai fera l'objet des mesures suivantes :

- Résistance du béton ;
- Epaisseur des parois (au droit de l'insert);
- Distance de recouvrement de l'insert (détermination par déduction à partir des mesures de l'épaisseur effective des parois).

L'interprétation des résultats d'essais tiendra compte de l'écart entre ces mesures observées et les valeurs affichées pour une utilisation de levage.

3.2 Conditions d'acceptation de l'échantillon

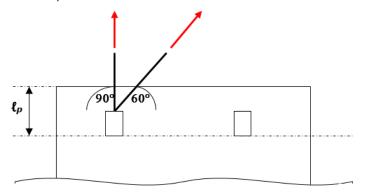
L'essai est considéré comme acceptable si les mesures de l'échantillon restent dans les tolérances suivantes :

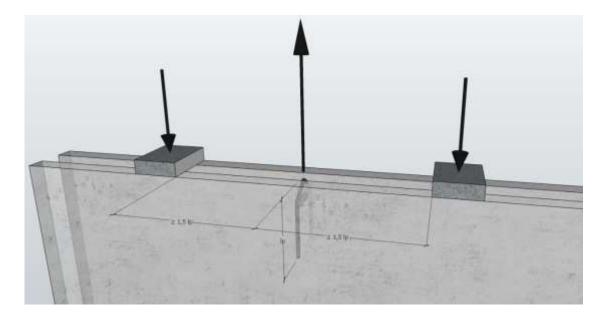
- Résistance du béton : +/-20 % de la résistance affichée au jeune âge (valeur garantie à la 1ère manutention via les éléments de levage intégrés) ;
- Epaisseurs des parois et épaisseur totale du MCI/MCII : +/-6mm (valeur individuelle) et +/- 3 mm (valeur moyenne sur 6 mesures : 2 en pied, 2 en tête et 2 à mi-hauteur) par rapport à la dimension nominale.

NOTA: les tolérances des conditions d'acceptation de l'échantillon dans le cadre de la réalisation des essais sur les éléments de levage intégré sont volontairement plus strictes que les tolérances dimensionnelles sur l'épaisseur des parois des procédés de MCI/MCII faisant l'objet d'une certification de type NF.

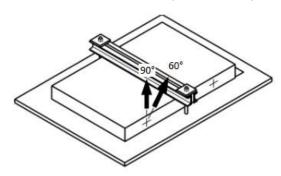
3.3 Mode opératoire

Pour les 3 configurations A, B ou C, décrites dans le §2.1, les essais doivent être réalisés selon les modalités décrites ci-après. On pourra également se au §7 du fascicule de documentation FD CEN/TR 15728 (août 2017) « Conception d'inserts pour le levage et des ancrages dans le béton par les essais » :

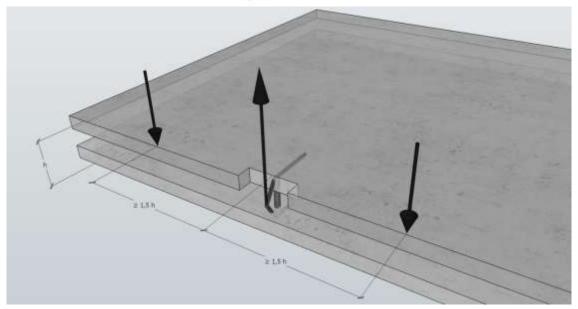

- L'effort de traction doit être mesuré directement dans l'élément de levage, sans interposition d'un dispositif de déviation
- Si les deux éléments de levage sont sollicités en même temps, l'effort de traction doit être également réparti, ce qui peut être assuré par la mise en place d'un équilibreur.


Secrétariat: 84 avenue Jean-Jaurès – Champs-sur-Marne – F-77447 Marne-la-Vallée Cedex 2

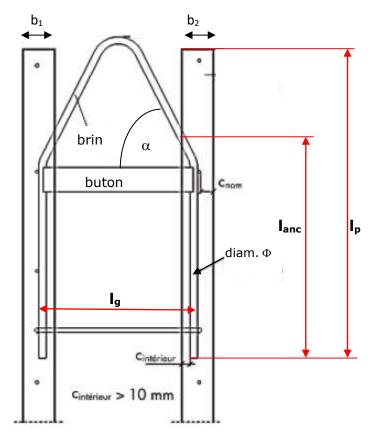
☎: (33)01.64.68.85.60 - Fax: (33)01.64.68.85.65 - Serveur Internet: http://www.cstb.fr - E-mail: secretariat.at@cstb.fr



- Les essais doivent être conduits sur les murs d'épaisseurs minimales, et dans des conditions de ferraillage minimales.
- Longueur d'ancrage :
 - \circ Configuration A : La distance entre le périmètre extérieur de l'élément de levage et l'appui de l'installation d'essai doit être au minimum de 1,5 fois la longueur de pénétration l_p de l'élément, sauf justification particulière.



 Configuration B : La distance entre le périmètre extérieur de l'élément de levage et l'appui de l'installation d'essai doit être au minimum de 1,5 fois l'épaisseur h de la paroi du MCI/MCII.


- Si les essais sont réalisés sur des éléments de diamètres différents, l'extrapolation pour d'autres diamètres n'est pas admise.

Nota: Un calage devra être intégré entre les deux parois en béton au niveau des appuis afin d'éviter une rupture prématurée du béton.

3.4 Regroupement des échantillons en famille : exemple pour le cas des boucles en acier doux

Pour limiter le nombre d'essais, il est possible de regrouper les inserts de levage en familles. Un exemple de regroupement est donné ci-dessous pour le cas des <u>boucles</u> de <u>levage en acier doux</u>.

3.41 Paramètres représentatifs

 α : angle formé par le brin incliné et le buton

 l_{anc} : longueur d'ancrage l_g : largeur d'accroche l_p : longueur de pénétration

Nota : les paramètres l_{anc} et l_g sont variables pour différentes boucles d'une famille

3.42 Paramètres non représentatifs

Les éléments suivants, relatifs aux épaisseurs de peaux et enrobages ne sont pas attachés à la famille mais aux conditions d'emploi des boucles. Ils peuvent faire l'objet de limitation en représentativité de l'échantillon (cf. 3.2), et doivent être décrits dans le rapport d'essai (cf. 4.2).

Le rapport d'essais fera état de performances mesurées avec des épaisseurs et des enrobages minimaux. Le respect de ces enrobages conditionnera la performance affichée.

 c_{nom} : recouvrement extérieur c_{int} : recouvrement intérieur b_1 : épaisseur 1ère peau b_2 : épaisseur 2ème peau

3.43 Critères de hiérarchisation entre paramètres représentatifs

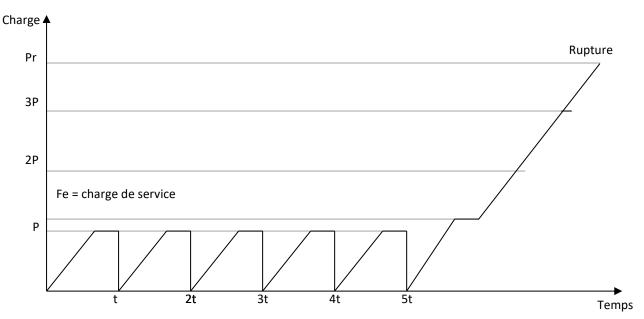
Tableau représentant les familles de boucles :

Dimension	Boucle de plus petite dimension	Boucle de plus grande dimension			
	transversale	transversale			
Diamètre de la boucle	φ identique				
Buton	Nature, section, spécifications de fabrication (soudures par exemple) identiques				
Epingle écarteur (élément disposé en pied)	Nature, section, spécifications de fabrication (soudures par exemple) identiques				
Angle formé par le brin incliné et le buton	α_0	$lpha_1$			
Largeur d'accroche	l_{g_0}	l_{g_1}			
Longueur d'ancrage dans les parois préfabriquées	$l_{anc,0}$	$l_{anc,1}$			

Critères sur les dimensions différenciées entre les deux boucles extrêmes :

$$\begin{aligned} \alpha_1 &\leq \alpha_0 \\ l_{g_1} &\geq l_{g_0} \\ l_{anc,1} &\leq l_{anc,0} \end{aligned}$$

Et pour toutes les boucles appartenant à la même famille, sur ces mêmes dimensions :


$$\begin{aligned} \alpha_i &\geq \alpha_1 \\ l_{g_i} &\leq l_{g_1} \\ l_{anc,i} &\geq l_{anc,1} \end{aligned}$$

Nota: Avec la règle ci-dessus, la boucle $1\left(\alpha_1;l_{g_1};l_{anc,1}\right)$ est estimée représentative de la famille de boucles $i\left(\alpha_i;l_{g_i};l_{anc,i}\right)$. Les performances de la boucle 1 peuvent donc être utilisées pour représenter celles de la famille des boucles i.

3.5 Chargement

L'effort de traction appliqué par un crochet sur un élément de levage ancré dans le mur à coffrage intégré, est effectué suivant un cycle de chargement/déchargement, allant jusqu'à la rupture par arrachement de l'élément :

La charge P correspond à l'effort exercé suivant l'angle de tirage, pour la CMU visée.

La durée de maintien en charge lors des paliers à la charge P est d'environ 30 sec.

Après 5 cycles de chargement/déchargement à la charge P, on réalise un palier de charge à la valeur F_e définie par le demandeur de l'Avis Technique.

A ce palier, il est procédé à un examen visuel pour s'assurer de l'absence de dégradation apparente ou de fissuration sur le parement extérieur. Dans le cas où une fissure est observée sur la parement extérieur, on procède au déchargement et on mesure l'ouverture de la fissure après déchargement. Si l'on observe une dégradation ou si la fissure sur le parement extérieur après déchargement est supérieure à 0,10 mm, un nouvel essai doit être réalisé avec une charge P plus faible (et donc une valeur de CMU visée et une charge F_e plus faibles).

Commentaire:

En pratique la charge F_e devrait être prise égale à $1,1 \times P$. Il est loisible de définir plusieurs paliers d'observation. Le nombre de cycles, la durée des cycles, et la durée des paliers peuvent être revus en fonction du comportement du système observé lors des essais initiaux et de leur exploitation. La montée en charge doit être progressive, la durée de montée en charge jusqu'à la ruine ne devant pas être inférieure à 10 minutes, déduction faite de la durée du(des) palier(s) d'observation à la charge F_e .

3.6 Matériel d'essai

Le matériel utilisé lors des essais doit être clairement défini dans le rapport d'essais.

L'étalonnage la chaine de mesures se fera par un organisme de contrôle agréé (fréquence de vérification annuelle).

4. Rapport d'essai

4.1 Supervision

Le rapport d'essai doit être établi sur la géométrie la plus défavorable, par un organisme dont la compétence est reconnue dans le domaine considéré. Cet organisme doit valider notamment :

- Les modalités d'essais prévues en fonction des prescriptions du présent protocole ;
- Un échantillon estimé représentatif des résultats observés lors des essais.

4.2 Description de l'échantillon

Les éléments de levages, les crochets et les murs à coffrage intégré doivent être clairement décrits dans le rapport d'essai, et en particulier :

- Le type de matériau des éléments
- La géométrie des éléments
- La position des inserts sur le mur à coffrage intégré
- La dimension du mur à coffrage intégré

Secrétariat : 84 avenue Jean-Jaurès – Champs-sur-Marne – F-77447 Marne-la-Vallée Cedex 2

- Le type d'inserts utilisés
- Les dispositions de ferraillage
- Les certificats des inserts utilisés

5. Interprétation des résultats

NOTA: Le contenu de ce chapitre est donné à titre indicatif, et n'est pas à la charge du demandeur.

La résistance caractéristique est calculée selon l'article D 7.2 de la NF EN 1990 Eurocodes Structuraux – Bases de calcul des structures, avec les paramètres suivants :

- Un fractile de 5% des charges de rupture mesurées dans chaque série d'essais,
- Un niveau de confiance de 75%,
- Une distribution supposée normale,
- Un écart-type de la population inconnu.

$$P_{rk}(n) = mP_r x (1 - k_n V_{Pr})$$

Avec:

- P_r charge de rupture
- $P_{rk}(n)$ charge de rupture caractéristique pour un échantillon de taille n,
- m_{Pr} moyenne des charges de rupture de n échantillons,
- k_n facteur de fractile caractéristique (cf. tableau ci-dessous)

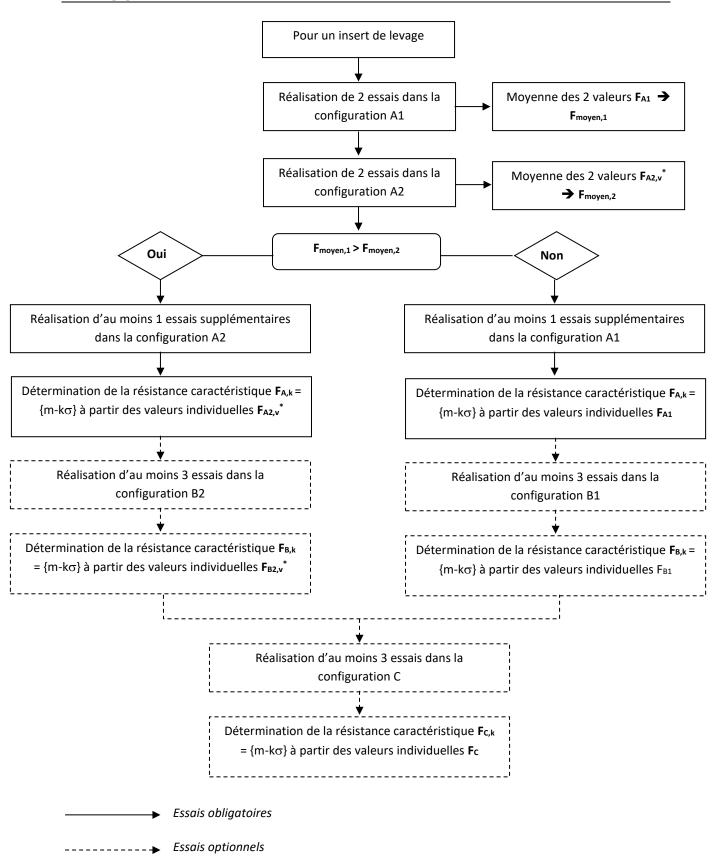
N	1	2	3	4	5	6	8	10	20	30	∞
k_n	-	-	3,37	2,63	2,33	2,18	2,00	1,92	1,76	1,73	1,64

- V_{Pr} coefficient de variation de Pr.

 V_{Pr} étant inconnu, il est estimé à partir de l'échantillon par la formule S_{Pr}/m_{Pr} avec :

- S_{Pr} écart type des charges de rupture de n échantillons (estimation de l'écart type de la population).

Coefficient de sécurité global sur la vérification des éléments de levage :


Le coefficient de sécurité global relatif à la vérification des éléments de levage comprend :

- Un coefficient de sécurité de 3 appliqué sur la valeur caractéristique (fractile de 5%, niveau de confiance de 75%) de la résistance à l'arrachement des éléments de levage (pour les configurations de levage décrites au §1,2 cidessus)
- Un coefficient de sécurité de 1,15 (coefficient d'effet dynamique) x 1,05 (incertitude sur le poids propre) =1,21 appliqué sur les sollicitations (poids du mur et des équipements de sécurité éventuels)

Le coefficient d'effet dynamique de 1,15 est un coefficient dynamique forfaitaire indépendant des vitesses de manutention et valable pour des conditions de levage usuelles : grue à tour et grue mobile à poste fixe.

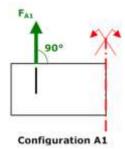
6. Logigramme de réalisation des essais

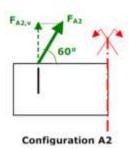
^{*} les termes indicés $X_{A2,\nu}$ ou $X_{B2,\nu}$ correspondent au projections verticales de l'effort mesuré, pour le cas des configuration A2 ou B2 avec un angle de 60°.

ANNEXE

Cette annexe s'applique dans le cas où la valeur de la résistance à la compression des parois à la première manutention revendiquée est inférieure à la valeur de résistance à la compression du béton des parois lors de la livraison $f_{c,2}$ (cas b du §1.3 du présent document).

Il s'agit de la réalisation d'une phase de pré-chargement de l'insert de levage avec un béton à jeune âge (f_{c,1}) avant la réalisation des essais de caractérisation suivant les prescriptions de ce document.


Dans cet Annexe, seuls les éléments complémentaires au protocole d'essai présenté dans ce document y sont précisés.


A.1. Principes

A.1.1 Hypothèses générales

Le principe des essais de pré-chargement vise à solliciter l'insert de levage pour reproduire les conditions de levage du produit en phase de démoulage à la résistance $f_{c,1}$. déclarée pour la manutention en usine.

Le principe des essais de pré-chargement consiste à exercer un effort dans le plan du MCI/MCII dans la configuration représentative du mode de levage en usine établie par le demandeur (configuration A1 ou configuration A2).

Cette configuration correspond à un levage vertical du MCI/MCII.

A.2 Mode opératoire

A.2.1 Caractérisation

L'échantillon d'essai fera l'objet des mesures suivantes :

• Résistance du béton au démoulage (fc,1);

En complément au §3.1 du présent document.

A.2.2 Nombre de corps d'épreuve

Un minimum de 3 échantillons doit être soumis à essai.

A.2.3 Conditions d'acception de l'échantillon

Se reporter au \$3.2 du présent document.

A.2.4 Mode opératoire

Se reporter au §3.3 du présent document

A.2.5 Regroupement des échantillons en famille : exemple pour le cas des boucles en acier doux

Se reporter au §3.4 du présent document

A.2.6 Application du pré-chargement

L'effort pré-chargement (traction) appliqué par un crochet sur un élément de levage ancré dans le MCI/MCII, est effectué suivant un cycle de chargement avec un palier de $1,20xP_{pr}$ où P_{pr} est défini comme l'effort exercé suivant l'angle de tirage (voir tableau ci-dessous).

Note 1 : cela suppose de caractériser au préalable la CMU selon la configuration A1 ou A2 (voir §5 du protocole d'essai).

Note 2 : la CMU est ici définie comme la projection à la verticale de la capacité résistante de la boucle à 60°

aya de CM	onfiguration ant permis de éterminer la U verticale au préalable:	Levage en usine selon A1	Levage en usine selon A2		
		P_{pr} =CMU visée	P_{pr} = CMU visée/sin60°		
	A1	P_{A1} $P_{pr} = P_{A1} = CMU$	P_{A1} $P_{pr} = \frac{P_{A1}}{\sin 60^{\circ}} = \frac{CMU}{\sin 60^{\circ}}$		
	A2	P_{pr} =CMU visée P_{A2} $P_{pr} = P_{A2} \sin 60^{\circ} = CMU$	P_{pr} = CMU visée/sin60° P_{A2} $P_{pr} = P_{A2} = \frac{CMU}{\sin 60^{\circ}}$		

Légende:

 P_{nr} = Effort de pré-chargement

CMU = Valeur de la CMU revendiquée

 P_{A1} = Effort de levage déduit à partir de la CMU revendiquée, en configuration A1

 P_{A2} = Effort de levage déduit à partir de la CMU revendiquée, en configuration A2

La durée de maintien en charge du palier à la charge $1,20*P_{Pr}$ est de 5 min.

A ce palier, il est procédé à un examen visuel pour s'assurer de l'absence de dégradation apparente ou de fissuration sur le parement extérieur. Dans le cas où une fissure est observée sur le parement extérieur, on procède au déchargement et on mesure l'ouverture de la fissure après déchargement.

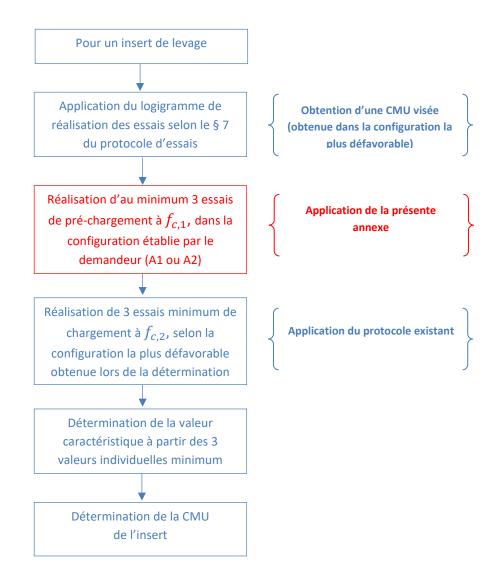
Si l'on observe une dégradation ou si la fissure sur le parement extérieur après déchargement est supérieure à 0,10 mm, les critères d'essais doivent être reconsidérés.

A.2.7 Matériel d'essai

Voir §3.6 du présent document.

A.3 Rapport d'essai

Voir §4 du présent document.


A.4 Interprétation des résultats

Voir §5 du présent document.

A.5. Logigramme spécifique de réalisation des essais

Le logigramme de réalisation des essais est amendé pour tenir compte de la phase de pré-chargement.

